Escherichia coli mutants overproducing phenylalanyl- and threonyl-tRNA synthetase.

نویسندگان

  • J M Grüll
  • H Hennecke
  • J Fröhler
  • J Thomale
  • G Nass
  • A Böck
چکیده

The structural genes for threonyl-tRNA synthetase (ThrRS) and phenylalanyl-tRNA synthetase (PheRS) are closely linked on the Escherichia coli chromosome. To study whether these enzymes share a common regulatory element, we have investigated their synthesis in mutants which were selected for overproduction of either ThrRS or PheRS. It was found that mutants isolated previously for overproduction of ThrRS as strains resistant to the antibiotic borrelidin (strains Bor Res 3 and Bor Res 15) did not show an elevated level of PheRS. PheRS-overproducing strains were then isolated as revertants of strains with structurally altered enzymes. Strain S1 is a temperature-resistant derivative of a temperature-sensitive PheRS mutant, and strain G118 is a prototrophic derivative of a PheRS mutant which shows phenylalanine auxotrophy as a consequence of an altered K(m) of this enzyme for the amino acid. In both kinds of revertants, S1 and G118, the concentration of PheRS and ThrRS was increased by factors of about 2.5 and 1.8, respectively, whereas the level of other aminoacyl-tRNA synthetases was not affected by the mutations. Genetic studies showed that the simultaneous overproduction of PheRS and ThrRS in revertants G118 and S1 is based upon gene amplification, since this property was easily lost after growing the cells in the absence of the selective stimulus, and since this loss could be prevented by the presence of the recA allele. By similar criteria, the four- and eightfold overproduction of ThrRS in strains Bor Res 3 and Bor Res 15, respectively, was very stable genetically, indicating that it is caused by a mutational event other than gene amplification. From these results, we conclude that the concomitant increase of PheRS and ThrRS in strains G118 and S1 is an expression of gene duplication and not of a joint regulation of these two aminoacyl-tRNA synthetases. This conclusion is further supported by the result that, in mutant G118 as well as in its parental strain G1, growth in minimal medium lacking phenylalanine led to an additional twofold increase of their PheRS concentration. This increase was restricted to the PheRS, since the level of other aminoacyl-tRNA synthetases, including the ThrRS, stayed unchanged.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escherichia coli phenylalanyl-tRNA synthetase operon: characterization of mutations isolated on multicopy plasmids.

Plasmid pB1 carries the genes for threonyl-tRNA synthetase, phenylalanyl-tRNA synthetase, and translation initiation factor IF3. Strains carrying this plasmid overproduce phenylalanyl-tRNA synthetase about 100-fold. Spontaneous mutant plasmids were obtained which no longer caused the overproduction of the enzyme. Three classes of mutations were found. (i) Deletion mutations were found, some of ...

متن کامل

Threonyl-transfer ribonucleic acid synthetase and the regulation of the threonine operon in Escherichia coli.

Two threonine-requiring mutants with derepressed expression of the threonine operon were isolated from an Escherichia coli K-12 strain containing two copies of the thr operon. One of them carries a leaky mutation in ilvA (the structural gene for threonine deaminase), which creates an isoleucine limitation and therefore derepression of the thr operon. In the second mutant, the enzymes of the thr...

متن کامل

The yeast phenylalanyl-transfer RNA synthetase recognition site: the region adjacent to the dihydrouridine loop.

Purified yeast phenylalanyl-tRNA synthetase can aminoacylate (yeast) tRNA(Phe), (wheat) tRNA(Phe), and (Escherichia coli) tRNA(1) (Val) (1, 2). We now report that this synthetase can also aminoacylate (E. coli) tRNA(Phe) and (E. coli) tRNA(1) (Ala). Highly purified (E. coli) tRNA(Phe) is heterologously aminoacylated to approximately 90% of the extent achieved with the homologous enzyme (crude E...

متن کامل

EVOLUTION AND tRNA RECOGNITION OF THREONYL-tRNA SYNTHETASE FROM AN EXTREME THERMOPHILIC ARCHAEON, Aeropyrum pernix K1

An extreme thermophilic archaeon, Aeropyrum pernix K1 possesses two possible threonyl-tRNA synthetase genes. Sequence homology analysis of these genes with other species threonyl-tRNA synthetase showed that the shorter gene did not possess motif-2 and motif-3 of catalytic core that were conserved in class II aminoacyl-tRNA synthetases. On the other hand, the longer gene had almost all amino aci...

متن کامل

Gene organization around the phenylalanyl-transfer ribonucleic acid synthetase locus in Escherichia coli.

The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 1979